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TECHNICAL EVALUATION REPORT 

AGARD F l u i d  Dynamics Panel Symposium on 
APPLICATIONS o f  COMPUTATIONAL FLUID DYNAMICS i n  AERONAUTICS 

W.J. McCroskey 

U .S. Army A e r o f l  i ghtdynamics Di rectorate 
NASA Ames Research Center 
Mof fe t t  F ie ld ,  C a l i f o r n i a  

ABSTRACT 

The F l u i d  Dynamics Panel of AGARD arranged a SYmPOSiUm on "Appl icat ions o f  Computational F l u i d  Dynam- 
i c s  i n  Aeronautics." on 7-10 A p r i l  1986 i n  Aix-en-Provence. France. The purpose of the Symposium was t o  
prov ide an assessment of the s tatus of CFD i n  aerodynamic design and analysis, w i t h  an emphasis on emerg- 
i n g  appl icat ions o f  advanced computational techniques t o  complex configurations. 
s p e c i f i c a l l y  t o  g r i d  generation. methods f o r  i n v i s c i d  flows. ca l cu la t i ons  o f  v iscous- inv isc id  in terac-  
t ions,  and methods f o r  so lv ing the Navier-Stokes equations. 
publ ished i n  AGARD Conference Proceedings CP-412 and are l i s t e d  i n  the Appendix of t h i s  repor t .  A b r i e f  
synopsis o f  each paper and some general conclusions and recomnendations are given i n  t h i s  evaluat ion 
repor t .  

1. INTRODUCTION 

Sessions were devoted 

The 31 papers presented a t  the meeting are 

The 58th Meeting o f  the AGARD F l u i d  Dynamics Panel (FDP) was held from the 7 th  t o  the 11th o f  A p r i l ,  
1986, i n  Aix-en-Provence. France. 
estab l ished FDP standing committee on Computational F l u i d  Dynamics, w i t h  the  fo l lowing theme: 

I t  included a major and t ime ly  symposium, organized by the recen t l y  

"Computational F l u i d  Dynamics i s  making an increas ing ly  major impact i n  aeronautical 
appl icat ions and on the aerodynamic design process. The rap id  progress i n  computer capabil-  
i t y ,  the general a v a i l a b i l i t y  o f  large scale computers, and the p a r a l l e l  achievements i n  
numerical analysis, a lgor i thm development and user experience assure t h a t  the r o l e  o f  CFD i n  
aeronautics w i l l  continue t o  expand. 

"The goal o f  the Symposium i s  t o  provide a balanced. if not  exhaustive, assessment o f  the 
s tatus o f  CFD i n  aerodynamic design and analysis. 
ing  appl icat ions o f  advanced computational techniques t o  complex and r e a l i s t i c  
configurations." 

The emphasis i n  the  symposium i s  on emerg- 

The Symposium spanned 3-1/2 days and consisted o f  f i v e  sessions concentrat ing on fou r  major topics: 
Session I. Gr id  Generation 
Session 11. I n v i s c i d  Flow I 
Session 111. I n v i s c i d  Flow I 1  
Session I V .  Viscous-Inviscid In teract ions 
Session V. Mavier-Stokes 

As suggested by the t i t l e s  o f  the i nd i v idua l  sessions, the speakers addressed numerous de ta i l ed  aspects o f  
g r i d  generation and a wide range o f  numerical methods and solut ions. 
are l i s t e d  i n  Appendix A. 
Session I 1 1  was devoted t o  methods f o r  solving the Euler  equations. 
boundary-layer formulat ions were presented i n  Session I V .  
dimensional so lu t ions o f  the Reynolds-averaged Navier-Stokes equations w i t h  turbulence modeling (abbre- 
v ia ted  throughout the  Symposium as simply Mavier-Stokes). 
t h e  Symposium e l i c i t e d  a wide range of informal comnents by many o f  t he  attendees. 
discussion and the regu la r  papers are published i n  AGARD Conference Proceedings CP-412. 
the  Program Comnittee f o r  the Symposium are given i n  Appendix B o f  t h i s  repor t .  

cornuni ty  today, most of the papers d e a l t  with complex conf igurat ions.  such as wing-body-store combina- 
t ions,  con t ro l  surfaces w i t h i n  j e t  nozzles, complete f ixed-wing a i r c r a f t ,  miss i les,  and he l i cop te r  r o t o r s  
and fuselages. 
t i o n  o f  turbulence, were not considered; however, fundamental aspects o f  v o r t i c a l  f lows and t ra i l ing-edge 
separation were t reated by several authors. Also, research on basic numerical analys is  and new a lgor i thm 
development was less emphasized than the appl icat ions o f  existing/methods and/or t h e i r  extensions t o  three 
dimensions. 

f in i te-vo lume methods, apparently r e f l e c t i n g  the contemporary tendencies i n  most aeronautical companies 
and research laborator ies.  
dirnensional (3-0) flows, on ly  three papers considered unsteady e f fec ts .  and i n  one o f  these the unsteadi- 
ness i n  the  s o l u t i o n  arose as an unexpected complication i n  a problem w i th  steady boundary condit ions. 
However, the program committee had not  s o l i c i t e d  papers on unsteady flows, as these had been addressed i n  

The t i t l e s  o f  the 31 con t r i bu t i ons  

Both i n t e g r a l  a i d  f i n i t e - d i f f e r e n c e  
Most of t he  papers i n  Session I 1  were concerned w i t h  p o t e n t i a l  f lows. wh i l e  

Most o f  Session V was devoted t o  three- 

I n  addi t ion,  a discussion pe r iod  a t  the end o f  
The t r a n s c r i p t  o f  t h i s  

The members o f  

I n  keeping w i t h  the s tated theme of the Symposium and w i t h  the general trends i n  the  aeronautical 

In general. bas ic  f l u i d  dynamic phenomena. such as turbulence modeling o r  d i r e c t  simula- 

It may be mentioned t h a t  the large major i ty  o f  the papers were concerned w i t h  f i n i t e - d i f f e r e n c e  and 

Also. i t  i s  noteworthy that ,  whi le  most o f  the papers emphasized three- 
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two previous AGARD meetings [Refs. 1.21 and i n  the associated reviews [Refs. 3.41. 
aerodynamics was discussed by only two speakers; this subject i s  the basis f o r  an AGARD Symposium i n  
A p r i l .  1987. 

2. SYNOPSIS OF THE PAPERS 

2.1. Gr id  Generation 

applying f i n i t e -d i f f e rence  and f inite-volUme methods t o  meaningful. P rac t i ca l  aeronautical problems. 
def in ing the surface geometry accurately f o r  complex 3-D bodies becomes a t ime- and CPU-consuming chore. 
Beyond tha t ,  creat ing meshes which conform t o  3-0 body surfaces and which d i s t r i b u t e  node po in ts  smoothly 
and e f f i c i e n t l y  throughout f l o w  f i e l d s  i s  a lso extremely chal lenging and laborious, espec ia l l y  if shock 
waves, contact d i scon t inu i t i es ,  and/or concentrated vo r t i ces  are Present. The use o f  i n t e r a c t i v e  conputer 
graphics i s  indispensible, and automation techniques are helpfu l .  but considerable human in te rven t ion  and 
ingenui ty  i s  required i n  a l l  but the simplest cases. To paraphrase the authors i n  t h i s  session, g r i d  gen- 
e r a t i o n  f o r  complex conf igurat ions can become more d i f f i c u l t  and more expensive than obta in ing the numeri- 
c a l  so lu t i on  i t s e l f .  And, wh i l e  a good g r i d  w i l l  not  guarantee a good so lut ion,  a bad g r i d  w i l l  almost 
c e r t a i n l y  produce a bad so lut ion.  

PAPER 1. OSKAM and HUIZ ING described a 2-D Zonal g r i d  g m Y a t i o n  method t h a t  i s  p a r t i c u l a r l y  su i tab le  
f o r  mult ieiement a i r f o i l s .  Each element of the a i r f o i l  i s  embedded i n  one o r  more separate zones. Wi th in  
each zone. the conformal transformation between phys ica l  and Computational space i s  computed by a var ia-  
t i o n a l  formulat ion that  minimizes the dev ia t i on  frm the desired g r i d  proper t ies,  e.g. c e l l  areas and 
or thogonal i ty .  whi le  a l lowing po in ts  t o  move along Some of the zonal boundaries. This freedom of movement 
f a c i l i t a t e s  matching the g r i d  in ter faces between zones. and l o c a l  surgery can be done t o  re loca te  topolog- 
i c a l  s i n g u l a r i t y  po ints  t h a t  may occur a t  zonal corners. 
su i tab le  f o r  Navier-Stokes computations f o r  an a i r f o i l - f l a p - s l a t  combination. 

geometry such as complete a i r c r a f t ,  i n  which the f low domain i n  phys ica l  space i s  subdivided i n t o  many 
nonoverlapping "blocks." 
ogy i n  each block may be d i f f e r e n t  and r e l a t i v e l y  a r b i t r a r y ,  according t o  what i s  most appropriate f o r  
t h a t  zone. However. g r i d  l i n e s  are forced t o  match and pass smoothly across the in ter faces.  
are generated sinultaneously i n  each block by so lv ing sets of inhomogeneous e l l i p t i c  p a r t i a l  d i f f e r e n t i a l  
equations. The authors candid ly  discussed some of the problems t h a t  they encountered, such as g r i d  l i n e s  
crossing over neighboring l i nes ,  t he  d i f f i c u l t i e s  i n  c l u s t e r i n g  g r i d  po in ts  a r b i t r a r i l y ,  and slow 
convergence, and they described how these problems were ameliorated. Results were shown f o r  a v a r i e t y  of 
a i r c r a f t  and m i s s i l e  conf igurat ions which used from 9 t o  240 blocks. The computer memory requi red t o  
generate a complete g r i d  system i s  about ha l f  t h a t  needed by the authors' f l ow  so lver  f o r  the Euler  equa- 
t ions,  whereas the  CPU t i m e  i s  genera l ly  an order of magnitude less  t o  generate the g r i d  than i t  i s  t o  
compute the so lut ion.  

PAPER 3. FRITZ also used the above mul t ib lock concept and e l l i p t i c  p a r t i a l  d i f f e r e n t i a l  equation 
(PDE) so lvers i n  h i s  3-D g r i d  generation method f o r  complete a i r c r a f t .  but there are several d i f ferences.  
His  g r i d  l i n e s  are continuous across zonal boundaries, but the slopes are not  matched. Gr id  po in ts  are 
generated i n  each block i n  steps: f i r s t  along the perimeters, then on each surface, and f i n a l l y  w i t h i n  
each block separately. However, t he  surface g r i d s  of a l l  o f  the blocks are patched together before the 
complete g r i d s  are generated i ns ide  the i nd i v idua l  blocks. 
g r i d s  o f  several mi l ! ion g r i d  po in ts  t o  be generated on computers w i th  modest main memories. 
f i gu res  f o r  CPU t i m e s  o r  input /output  t imes were given. 

new, e f f i c i e n t  grid-generation method. The former uses an e x i s t i n g  computer-aided design/computer-aided 
manufacturing system (CAD/CAM). and an i n t e r a c t i v e  graphics workstat ion t o  manipulate the i npu t  data base 
t h a t  def ines some 50 components o f  an F-16 a i r c r a f t .  It a lso  const ructs  the  appropriate surfaces f o r  CFD 
modeling o f  t he  wing, fuselage, canopy, and fa i red-over  i n l e t .  The g r i d  systems i n  the f l ow  f i e l d  are 
generated by applying "parabol ic"  d i f f e rence  operators i n  two o f  the three d i rec t i ons ,  t o  the e l l i p t i c  
PDEs (wi thout  t he  source terms) used by the previous authors. This  approximation al lows a noni terat ive.  
marching s o l u t i o n  procedure t o  be used and thereby saves considerable CPU t i m e  and in-core memory, wh i l e  
r e t a i n i n g  good contro l  over the  c e l l  areas, c lus te r i ng ,  and skewness. 
scheme was used t o  construct a r e l a t i v e l y  coarse g r i d  over the whole f l ow  f i e l d .  and f i n e r  inner  g r i d s  
were i n te rpo la ted  t o  the desired d i s t r i b u t i o n  on the body. 

2.2. I n v i s c i d  F low I 

F i n a l l y ,  hypersonic 

The papers i n  Session I emphasized the great  challenges t h a t  g r i d  generation poses i n  successful ly 
Even 

An example was given o f  a g r i d  t h a t  would be 

PAPER 2. WEATHERILL. SHAW. FORSEY, and ROSE presented a zonal technique f o r  3-0 bodies o f  complicated 

A f ea tu re  o f  t h i s  method i s  t ha t ,  i n  p r i n c i p l e .  t he  g r i d  s t ruc tu re  and/or topol -  

The g r i d s  

The data management s t ra tegy al lows large 
However, no 

PAPER 4. EDWARDS described both a procedure f o r  de f i n ing  the  geometry o f  a f i g h t e r  a i r c r a f t  and a 

I n  the  example given, the parabol ic  

This  session was mostly devoted t o  l i n e a r  and nonlinear methods f o r  p o t e n t i a l  f lows. These methods 
are P a r t i c u l a r l y  useful i n  the aeronautical design process, e i t h e r  because o f  t h e i r  computational e f f i -  
ciency. o r  f o r  t h e i r  a b i l i t y  t o  t r e a t  complex conf igurat ions eas i l y ,  o r  both. 

methods t h a t  are often used f o r  l i n e a r  ca l cu la t i ons  o f  complex geometries i n  supersonic f low. 
pared Panel so1utions f o r  r e l a t i v e l y  simple wings, bodies. and wing-body combinations w i t h  the r e s u l t s  o f  

PAPER 5. SMITH and WOODWARD assessed the c a p a b i l i t i e s  and de f i c ienc ies  o f  three establ ished panel 
They com- 
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experiments, higher-order panel methods, and E u l e r  calculationS. 
the  fo l lowing areas where problems are most l i k e l y  t o  ar ise:  

From t h i s  comparison, they i d e n t i f i e d  

1. 
2 .  
3 .  

Spurious r e f l e c t i o n s  and other  discrepancies a t  wing t i p s ,  
Rounded leading edges and other regions Of h igh Surface slopes, 
The neighborhood o f  wing-body jUnCtiOns. 

Rounded leading edges t h a t  produce detached bow shock waves and source d i s c o n t i n u i t i e s  a t  fuselage panel 
edges were ind icated t o  be the most troublesome. 

numerical techniques t o  speed UP the ca lcu lat ions-  
the  method of steepest gradients. and a special way of in t roducing ex t ra  co l l oca t i on  po in ts  i n  regions of 
high curvature. 
w i t h  the gain increasing as the  number of Panels increased. 
sphere, wing, and he l i cop te r  and t ranspor t  fuselages. 

t he  transonic f low near the t i p s  Of  he l icopter  r o t o r  blades. For t h i s  c lass o f  problems, the v o r t i c a l  
wake i s  very important, but ca l cu la t i ng  i t s  s t ructure and p o s i t i o n  e x p l i c i t l y  or d i r e c t l y  i s  beyond the  
cu r ren t  s ta te  o f  the a r t  i n  CFD. Therefore. two d i f f e ren t  methods were developed t o  couple approximate 
r o t o r  wake models w i t h  the  f i n i t e -d i f f e rence  code. The f i r s t  formulation i t e r a t e s  between (1) the l o c a l  
blade l i f t  which i s  ca lcu lated by the fUl l -Potent ia l  code f o r  a given angle o f  a t tack d i s t r i b u t i o n ,  and 
(2) the blade-surface in f low,  or e f fec t i ve  angle of attack, which i s  obtained from an approximate, i n t e -  
g r a l  wake method. The i n t e g r a l  code a lso predicts the instantaneous blade motion. The second wake- 
modeling scheme a1 lows concentrated Vort ices of predetermined strength t o  be introduced i n t o  the  i n t e r i o r  
of t he  computational domain by means Of a "SPli t-POtential" formulation o f  the f i n i t e -d i f f e rence  equa- 
t ions.  Although t h i s  work i s  not  complete. encouraging agreement w i th  experiments was obtained fo r  both 
methods. 

PAPER 8. KAFYEKE presented a 3-0 transonic small-disturbance code t h a t  uses g r i d  embedding t o  p red ic t  
the aerodynamic in ter ference o f  wing-body-pylon-store configurations. 
inherent i n  the small-disturbance formulation great ly  S impl i f ies  the grid-generation problem by a1 lowing 
Cartesian meshes t o  be used everywhere, without conforming t o  the actual surfaces. 
g r l d s  around each component are embedded w i t h i n  an Overa l l  coarse gr id ,  and the  so lu t i on  procedure cycles 
between the coarse and f i n e  g r i d  regions t o  accelerate the convergence. C i t i n g  the good agreement 
obtained w i t h  experiments and the modest computational requirements o f  the code when using approximately 
200,WO g r i d  points, t he  author downplayed the need f o r  supercomputers i n  the aeronautical design process. 

PAPER 9. VAN DER VOOREN. VAN DER WEES. and MEELKER described the computational aerodynamics i n te -  
grated system c a l l e d  MATRICS (Multl-component A i r c ra f t  Transonic I n v i s c i d  Computational System) tha t  i s  
under development a t  the Nat ional  Aerospace Laboratory. This system cu r ren t l y  solves the f u l l - p o t e n t i a l  
equation using a m u l t i g r i d  method enhanced a t  National Aerospace Laboratory NLR. w i t h  prov is ions f o r  
approximately modeling vortex sheets, propel ler  slipstreams, and j e t  exhaust plumes. Extensions are 
underway t o  the Euler equations i n  subdomains, and eventual ly  t o  the Navier-Stokes equation. MATRICS i s  
designed w i t h  both scalar  and vector computers i n  mind, but a l l  the data are stored i n  the main memory 
wi thout  1/0 ( input /output )  t ransfer ,  i n  an t i c ipa t i on  of the large memories t h a t  f u tu re  supercomputers w i l l  
feature. 
free-stream "consistency." a r t i f i c i a l  viscosity, and the s i ze  of the computational domain on the computed 
r e s u l t s  f o r  a representat ive t ransonic  wing with and wi thout  a c y l i n d r i c a l  body and/or p rope l l e r .  
noted t h a t  the c a l c u l a t i o n  o f  drag e n t a i l s  more s t r i ngen t  requirements f o r  both g r i d s  and convergence 
tolerences than does l i f t .  

PAPER 6 .  LE, MORCHOISNE. and RYAN described a Panel code under development tha t  incorporates some new 
They have developed a f a s t  i t e r a t i v e  technique using 

This method was shown t o  be s i g n i f i c a n t l y  f as te r  than a d i r e c t  i n t e g r a t i o n  technique, 
Some Prel iminary r e s u l t s  were shown fo r  a 

PAPER 7. STRAWN and TUNG discussed t h e  adaptation of an unsteady. 3-0 f u l l - p o t e n t i a l  code t o  compute 

The mean-surf ace approximation 

Furthermore. f i n e  

In a d d i t i o n  t o  the systems aspects, the authors reported on e f f e c t s  o f  boundary condit ions, 

They 

PAPER 10. PETRIE and S I N C L A I R  gave a progress repo r t  on t h e i r  development o f  a nonl inear f i e l d  panel, 
o r  i n teg ra l ,  method for solv ing the f u l l - p o t e n t i a l  and Euler equations f o r  complex conf igurat ions.  
t h i s  approach. f i e l d  computational g r i d s  are only needed i n  r e l a t i v e l y  small regions. and they need not  be 
body-conforming. For compressible flows, however, nonl inear volume in teg ra l s  a r i s e  t h a t  must be evaluated 
i t e r a t i v e l y .  
were given. 

several examples of f i g h t e r  a i r c r a f t  i n  supersonic f low. 
e f f e c t i v e  use o f  CFD: 

In 

No d e t a i l s  o f  t he  s o l u t i o n  technique nor o f  t he  computational requirements and e f f i c i e n c y  

PAPER 11. MARCHBANK presented an overview o f  t he  use o f  C f D  i n  m i l i t a r y  a i r c r a f t  design. i nc lud ing  
He stressed three important requirements f o r  

1. Speed - f a s t  i n t e r a c t i o n  w i t h  the a i r c r a f t  geometry d e f i n i t i o n ,  
2. U t i l i t y  - easy-to-use CFD procedures, or iented t o  the  engineer, 
3. C r e d i b i l i t y  - adequate accuracy o f  the aerodynamic resu l t s .  

Panel methods more near ly  s a t i s f y  the  f i r s t  requirement. both w i th  regard t o  s o l u t i o n  time and t o  geometry 
interface, whereas Euler ca l cu la t i ons  were found t o  be s i g n i f i c a n t l y  more accurate f o r  the supersonic 
f lows of i n te res t .  
pitching-moment opt imizat ion.  and forebody and canopy design. 
i c a n t  improvements i n  supersonic a i r c r a f t  performance wi thout  compromising t ransonic  cha rac te r i s t i cs ,  
w i t h i n  shor t  p r o j e c t  t imescales. 

PAPER 12. WARDLOW and D A V I S  began the sequence o f  papers on Euler methods t h a t  continued through 
Session 111. 

Examples were given o f  draa opt imizat ion,  r i n g  design wi th  drag canst ra in ts ,  
These r e s u l t s  were shown t o  lead t o  s i g n l f -  

Thei r  method i s  a space-marching, f in i te-vo lume implementation o f  a Godunov-type scheme i n  



2.3. I n v i s c i d  Flow I 1  

Euler codes are emerging rap id l y  from the  research stage, and aS demonstrated i n  t h i s  session, they 
are f i nd ing  increasing appl icat ions t o  3-0 conf igurat ions w i t h  Strong nOn1 inear features.  
methods w i th  a wide range o f  computer requirements were Presented fo r  so lv ing the  Euler equations. 

cu la te the  t ransonic and Supersonic flow i n  an a x i s Y m e t r i c  IXXzle w i t h  con t ro l  surfaces prot rud ing i n t o  
the  stream j u s t  upstream o f  t he  nozzle e x i t .  
nodes i n  two blocks was used, requ i r i ng  on the  order of 10 min. cpu t ime on a Cray 1s computer. 
r e s u l t s  were compared w i t h  l i n e a r  theory and experiments; i t  was found tha t  t he  th rus t  d e f l e c t i o n  caused 
by the  con t ro l  surface was accurately predicted, bu t  the  loss  i n  t h r u s t  which was due t o  the i n te rac t i on  
was underestimated. 

A v a r i e t y  of 

PAPER 13. B R E O I F ,  CHATTOT, KOECK. and MERLE used an e x p l i c i t ,  m u l t i g r i d  f in i te-vo lume method t o  tal- 

A r e l a t i v e l y  coarse g r i d  system o f  approximately 60,000 
The 

PAPER 14. LEICHER employed a d i f f e ren t  e x p l i c i t ,  mul t ib lock.  m u l t i g r i d  f in i te-vo lume method t o  calcu- 
l a t e  t ransonic  f l o w  over a wing and subsonic flow i n  the  d i f fusers o f  a tu rb ine  and a wind tunnel. 
wing-propel ler  combination was a l so  simulated us ing an actuator-disk model a t  t he  plane o f  the  propel-  
l e r .  Extensive gr id-ref inement and mesh-spacing studies were ca r r i ed  out f o r  the  wing, w i t h  the  number of 
g r i d  po in ts  vary ing from approximately 2 0 . ~ 0  t o  1,200.000. 
l a t t e r  appeared t o  require over 100 hours of CPU t ime on an IBM 3083 computer, bu t  an intermediate g r i d  o f  
about 150,000 po in ts  seemed t o  g i ve  sa t i s fac to ry  r e s u l t s  i n  much less  time. 
tu rb ine  d i f f u s e r  showed evidence o f  bimodal steady-state so lut ions.  

A 

From the in format ion g iven i n  the  paper, t he  

The r e s u l t s  f o r  t he  Kaplan 

PAPER 15. MURMAN and RIZZI provided one of t he  more fundamental and provocat ive presentat ions o f  t he  
symposium. Thei r  paper concerned the  c a p a b i l i t i e s  of Euler codes t o  generate and simulate leading-edge 
vo r t i ces  on delta-wing conf igurat ions a t  h igh  Reynolds numbers. 
wings w i t h  sharp leading edges, I n  both subsonic and supersonic f low. Concentrated v o r t i c a l  s t ructures 
emerged i n  the  solut ions w i t h  approximately the  co r rec t  t o t a l  pressure loss  i n  the  centers o f  the  
structures.  From t h e i r  own and other  studies, they found t h i s  t o t a l  pressure loss  t o  be approximately 
independent o f  numerical parameters, such as g r i d  spacing and the  l eve l  o f  t he  a r t i f i c i a l  d iss ipat ion.  
Also, t h e  ca lcu lated t o t a l  pressure loss  was r e l a t i v e l y  independent o f  whether o r  no t  physical  
viscous-stress terms were included i n  the  equations. 
t i v e  t o  f low and geometry parameters, as i t  should be. 
"...any mechanism, whether r e a l  o r  a r t i f i c i a l  (i.e., numerical - author), which gives the  vortex sheet 
some thickness w i l l  lead t o  a t o t a l  pressure loss." He went on t o  discuss the  s t ruc tu re  o f  vortex cores, 
some imp l i ca t i ons  of t o t a l  pressure losses w i t h  respect t o  vor tex breakdown, and so lut ions t h a t  were glob- 
a l l y  s ta t i ona ry  bu t  l o c a l l y  unsteady. Overal l ,  t h i s  paper i d e n t i f i e d  phenomena which w i l l  mani fest  them- 
selves i n  fu tu re  ca lcu lat ions and which w i l l  sure ly  be the  subject  o f  f u r t h e r  controversy and 
invest igat ion.  

PAPER 16. PERRIER, whose group a t  Avions Marcel Oassault-Breguet has pioneered the  use o f  f i n i t e -  
element methods f o r  aeronautical appl icat ions,  gave a b r i e f  review and comparison o f  f in i te-vo lume and 
f in i te-e lement  methods f o r  so lv ing the  Euler equations. He expressed the  view t h a t  Navier-Stokes solvers 
are too  expensive for rou t i ne  i n d u s t r i a l  use, bu t  he stressed t h a t  p o t e n t i a l  methods f a i l  t o  p red ic t  many 
nonl inear aerodynamic phenanena accurately enough. He showed numerous examples o f  so lu t ions f o r  complex 
f lows and/or conf igurat ions,  and he discussed the  r o l e  o f  Euler codes as approximations t o  Navier-Stokes 
codes and as possible a ids  i n  understanding turbulence. 

order accurate and which can be run  i n  e i t h e r  an e x p l i c i t  o r  i m p l i c i t  mode. 
Godunov concepts (see Paper 12. above). A r e l a t i v e l y  simple gr id-generat ion scheme w i t h  g r i d  embedding 
allowed them t o  generate several impressive solut ions,  us ing up t o  520.000 c e l l s ,  f o r  a complete f i g h t e r  
a i r c r a f t  i n  transonic and supersonic f l ow  (see Fig. 1. This f i g u r e  was i n  c o l o r  i n  the  o r i g i n a l  paper). 
A l i m i t e d  gr id-ref inement study ind icated t h a t  g r i ds  o f  t h i s  s i z e  were requi red f o r  r e l i a b l e  resu l t s .  The 
CPU times f o r  the  computations. which were done on Cray X-MP machines, were no t  quoted, bu t  based on the  
number of g r i d  po ints  and the  proper t ies o f  the  code, one might i n f e r  t h a t  they were several  hours. 

a complete f i g h t e r  a i r c r a f t ,  although t h e i r  so lu t i on  was no t  no t  f u l l y  converged a t  t he  t ime o f  the Sympo- 
sium. They s ta r ted  d t h  a mul t ib lock,  e x p l i c i t  f in i te-vo lume predic tor -corrector  formulat ion,  and 
employed 20 blocks wi th a t o t a l  o f  about 530,000 g r i d  points.  A f t e r  1500 i t e r a t i o n s ,  they switched t o  an 
i m p l i c i t  f low-solver r l t h  a fas te r  r a t e  o f  convergence, bu t  t h i s  scheme was no t  described. 
presented a f te r  3100 i t e r a t i o n s  appeared t o  be evolv ing toward agreement w i t h  experimental data. 
p r i v a t e  comnunication, t h e  authors have since confirmed t h i s  t rend a f t e r  another 1000 i t e ra t i ons .  although 
the  experimental multiple-shock s t ruc tu re  on the  wing never mater ia l ized i n  the  so lut ion;  t h i s  behavior i s  

Several examples were g iven o f  d e l t a  

On the  other  hand, t h i s  loss  wds found t o  be sensi- 
Professor Murman explained h i s  argument tha t  

PAPER 17. EBERLE and MISEGAOES described a new f in i te-vo lume Euler code t h a t  i s  claimed t o  be t h i r d -  
Their  method a lso uses 

PAPER 18. KARMAN. STEINBRENNER, and KISIELEWSKI a lso presented a demonstration Euler ca l cu la t i on  f o r  

The r e s u l t s  
I n  a 
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(RED) 

(BLUE) 

Fig. 1. Computed surface pressure d i s t r i b u t i o n s  on a f i g h t e r  a i r c r a f t ;  Paper 17. 

a t t r i b u t e d  t o  inadequate g r i d  resolut ion.  
o f  some 30-35 hours, o f  which approximately 30% was I/O t ime t o  the SDD ( so l i d -s ta te  device) external  
memory device. 

The code was run  on Cray X-MP and Cray 2 machines f o r  a t o t a l  

2.4 Viscous-Inviscid In te rac t i ons  

As suggested by the t i t l e .  the papers i n  Session I V  addressed the r e l a t i v e l y  inexpensive i n t roduc t i on  
o f  viscous e f f e c t s  by means o f  boundary-layer concepts coupled w i t h  i n v i s c i d  f l ow  solvers. 
t h i s  approach, a b r i e f  explanation o f  the nomenclature used i n  t h i s  repo r t  may be i n  order. 
i s  c a l l e d  "weak" i f  the i n v i s c i d  pressure d i s t r i b u t i o n  i s  impressed d i r e c t l y  on the boundary layer  and the 
r e s u l t a n t  boundary l aye r  weakly perturbs the i n v i s c i d  so lut ion.  A t  l eas t  i n  2-0 steady flows. t h i s  proce- 
dure becomes s ingu la r  i n  the neighborhood o f  f low reversal.  
l a y e r  c a l c u l a t i o n  i s  performed i n  an inverse mode and the computed pressure d i s t r i b u t i o n  i s  i n t ima te l y  and 
s t rong ly  coupled w i t h  the i n v i s c i d  f low-solver. Many of the specia l  techniques tha t  have been introduced 
t o  accelerate convergence o r  t o  improve s t a b i l i t y  tend t o  b l u r  t h i s  formal d i s t i n c t i o n  between weak and 
strong coupling, but the "s t rong"  tarminology i s  re ta ined  here in when t h e i r  i n t e n t  i s  t o  achieve strong- 
coupling resu l t s .  

PAPER 19. R E I S  and THOMPSON compared weakly-coupled ca l cu la t i ons  by two d i f f e r e n t  numerical methods 
w i t h  measurements of 2-0 t r a i l i ng -edge  separation. 
numerical e r ro rs  and uncer ta in t ies.  However, they found t h a t  wh i l e  the numerical e r ro rs  were d i f f e r e n t ,  
the discrepancies w i t h  the  experiment were about the same: therefore, t he  turbulence model was blamed. 
Not su rp r i s ing l y ,  computed surface pressures ( l i f t )  were more sa t i s fac to ry  than sk in  f r i c t i o n  and wake 
p r o f  i 1 es (drag). 

PAPER 20. SCHMATZ and HIRSCHEL presented two zonal schemes f o r  coupling the Euler equations w i t h  both 
the  boundary-layer and Navier-Stokes equations, depending on the reg ion o f  t he  f l ow  f i e l d  and the strength 
o f  the i n te rac t i on .  
d i s t i n c t  zones, d i f f e r e n t  numerical schemes were used f o r  each equation set, w i t h  the g r i d s  overlapping 
between the  Euler  and Mavier-Stokes zones. 
t he  "close coupling" method, weak i n t e r a c t i o n  o f  the boundary layer  was reta ined on the f r o n t  o f  the a i r -  
f o i l ,  but  the Navier-Stokes g r i d  near and behind the body was embedded i n  an outer  Euler g r i d .  The Euler 
and Navier-Stokes zones were solved simultaneously w i t h  a comnon i m p l i c i t  r e l a x a t i o n  algori thm. 
speedup o f  about a f a c t o r  two was rea l i zed  compared t o  a f u l l  Navier-Stokes so lut ion;  the gain i n  3-D 
problems remains t o  be determined. 

Concerning 
The coupling 

"Strong" coupling means t h a t  the boundary- 

Thei r  study included a laudable, ca re fu l  assessment o f  

I n  the "a l t e rna t i ng  (weak) coupling" procedure o f  c y c l i c  i t e r a t i o n  through three 

Good r e s u l t s  were shown f o r  a i r f o i l s  wi thout  separation. I n  

I n  2-0. a 

PAPER 21 was withdrawn, reg re t tab l y .  

PAPER 22. GULCAT studied a 3-D unsteady boundary l aye r  on a body placed impuls ive ly  i n t o  motion. He 
solved the incompressible laminar boundary-layer equations i n  physical space, eschewing s i m i l a r i t y  t rans-  
formations. He employed a streanwise- and time-marching scheme t h a t  i s  i m p l i c i t  i n  the normal d i rec t i on ;  
the method seems t o  fo l low the s p i r i t  o f  B lo t tne r ' s  method [Ref. 6) f o r  2-0 steady boundary layers.  
r e s u l t a n t  code i s  r e l a t i v e l y  simple, computationally e f f i c i e n t ,  and s tab le f o r  nonsingular boundary-layer 
flow. He obtained good r e s u l t s  fo r  the flow-reversal t ime,  pressure d i s t r i b u t i o n ,  and pressure d i s t r i b u -  
t i o n  f o r  the impulsive f l ow  past a c i r c u l a r  cyl inder. 
spheroid were a lso g iven up t o  the t ime of the development o f  f l ow  reve rsa l  a t  the r e a r  s tagnat ion point .  

hub f a i r i n g s .  
l a rge  separated base flows. Most o f  the resu l t s  were obtained w i t h  a panel code combined, but not 
d i r e c t l y  coupled with, a 3-0 i n t e g r a l  boundary-layer code t h a t  located the  l i n e s  o f  separation. 
obviously not reproducing a l l  the f low features, these so lut ions o f t e n  help i d e n t i f y  troublesome regions 
and suggest modi f icat ions t o  the body geometry. 
noted, and p re l im ina ry  r e s u l t s  were shown that had been obtained w i t h  the  ONERA d iscrete-vor tex method f o r  
a r o t a t i n g  blade i n  forward f l i g h t .  However, t h i s  technique was found t o  be d i f f i c u l t  t o  combine w i th  the 

The 

Solut ions on the plane o f  symmetry o f  an oblate 

PAPER 23. CLER presented 6 number o f  3-0 so lu t ions obtained on he l i cop te r  fuselages. a i r  intakes, and 
This e f f o r t  was l a r g e l y  motivated by the need t o  estimate the drag o f  b l u f f  bodies w i th  

While 

The c r u c i a l  need f o r  an adequate vortex-wake model was 
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fuselage panel and boundary-layer Programs. and much more 
object ive.  

PAPER 24. VAN DALSEM and STEGER described a s imple and e f f i c i e n t  a lgor i thm f o r  so lv ing the unsteady, 
3-0 boundary-layer equations i n  e i t h e r  a time-accurate Or 

m r e  f l e x i b l e  and easy t o  apply than sPace-marching procedures. Their code switches from a d i r e c t  (weak) 
to an inverse (strong) mode near and w i t h i n  reverse-flow regions, which permits separation t o  be computed 
readi ly .  They a l so  exam- 
ined the use of t h i s  boundary-layer a lgor i thm t o  spee: UP the convergence o f  an e x i s t i n g  Navier-Stokes 
flow solver. 
promising. 
Navier-Stokes equations, which are solved only  on a coarse g r id .  Two examples were given i n  which the 
accuracy of f ine-gr id  Navier-Stokes SOlUtionS was obtained 20 times fas te r  w i t h  the F o r t i f i e d  Navier- 
Stokes scheme. 

3-D boundary layers with v iscous- inv isc id  i n te rac t i on .  
Le B a l l e u r ' s  we1 1-establ ished and successful 2-D i n t e g r a l  "semi-inverse" (essen t ia l l y  strong coupling) 
techniques t o  three dimensions. Careful a t t e n t i o n  1s given t o  the c h a r a c t e r i s t i c  cones of in f luence i n  
each zone, and m u l t i p l e  sweeps can Correct ly  couple d i f f e r e n t  f low domains w i t h  a wide range of f low 
d i rec t i ons .  
which m u l t i p l e  sweeps are made along the leading edge, but w i t h i n  a narrow s t r e a m i s e  zone, before the 
f i n a l  streamwise and spanwise sweeps Progress Over the upper and lower surfaces. L imi ted r e s u l t s  were 
presented o f  a wing ca l cu la t i on  w i th  Strong v iscous- inv isc id  coupling, but w i t h  no f low separation. How- 
ever, most o f  the resu l t s  were obtained i n  the d i r e c t  boundary-layer mode f o r  e l l i p s o i d s  and a reentry-  
type l i f t i n g  body at  angle of attack. The MZM Strategy allowed the  ca l cu la t i ons  t o  be continued, w i t h  no 
v iscous- inv isc id  coupling, over the whole body. even though crossflow-separation behavior developed on 
these bodies. 

W i l l  be requi red t o  meet t h i s  

mode. This approach i s  claimed t o  be 

TWO examples o f  good reSUlts were shown f o r  Prescribed Pressure d i s t r i b u t i o n s .  

The combination r e s u l t s  i n  a So-called F o r t i f i e d  Navier-Stokes" scheme tha t  looks very 
Fine-grid boundary-layer r e s u l t s  near the  wal l  are used as fo rc ing  funct ions i n  the th in - l aye r  

PAPER 25. LAZAREFF and LE BALLEUR described t h e i r  Multi-Zonal-Marching (MZM) method f o r  turbulent ,  
The MZM method i s  a procedure fo r  extending 

The computations Of Swept wings. f o r  example. s t a r t  a t  a leading-edge stagnat ion point ,  from 

PAPER 26. FERMIN concluded t h i s  session w i t h  an o u t l i n e  of two RAE v iscous- in teract ion wing codes and 
a desc r ip t i on  o f  several swept-wing appl icat ions.  
have been coupled with a 3-D i n t e g r a l  boundary-layer method i n  the  d i r e c t  mode. The former code was used 
t o  design the new RAE M2155 low-aspect-rat io research wing t h a t  comprises a major code-val idation exercise 
i n  progress, and wind tunnel r e s u l t s  from the i n i t i a l  t e s t s  of t h i s  wing were presented. F a i r l y  de ta i l ed  
comparisons were made w i t h  t h i s  experiment and w i t h  one of a transport-wing and body combination. Compu- 
t a t i o n s  done w i t h  the Viscous F u l l  Po ten t i a l  code. w i t h  d i r e c t  (weak) coupling, were i n  excel lent  agree- 
ment w i t h  the measurements i n  the subsonic case. 
v iscous- inv isc id  i n te rac t i on  were a major challenge. It was d i f f i c u l t  t o  o b t a i n  converged solut ions, and 
the computed pressure d i s t r i b u t i o n s  were de f i c ien t  i n  l o c a l  regions, p a r t i c u l a r l y  when the boundary layer  
was c lose t o  separating. Suggestions f o r  improvements included a d i f f e r e n t  coupl ing scheme, the use of an 
inverse (strong) method. and using Euler codes f o r  the i n v i s c i d  flow. 

Transonic small-disturbance and f u l l  p o t e n t i a l  codes 

However, t ransonic  condi t ions w i th  strong 

2.5 Navier Stokes 

The increas ing a v a i l a b i l i t y  o f  supercomputers and the progress i n  a lgor i thm and software development 
have brought 3-0 Navier-Stokes ca l cu la t i ons  o f  aeronautical conf igurat ions c lose t o  the realm o f  near-term 
r e a l i t y .  The papers i n  t h i s  session gave valuable i n s i g h t s  i n t o  the general s ta te  o f  the a r t  today, and 
i n t o  the  developing trends i n  appl ied computational aerodynamics f o r  viscous problems. 

number o f  recent accomplishments, i nc lud ing  simulat ions o f  f lows around a i r c r a f t  wings, fuselages, a f t e r -  
bodies. and i n l e t s .  He b r i e f l y  discussed numerical e f f ic iency and accuracy, boundary condit ions, turbu- 
lence models, g r i d  generation, data s t ruc tu re  and management, and post-processing and d i sp lay  o f  
resu l t s .  
elapsed time o f  numerical simulations. and he lamented the vast amount o f  in format ion t h a t  i s  discarded 
during o r  soon a f t e r  a t y p i c a l  invest igat ion.  The growing and l a s t i n g  importance o f  " i n t e r d i s c i p l i n a r y  
computational f l u i d  dynamics.'' i n  which Navier-Stokes equations are coupled w i t h  the governing equations 
o f  s o l i d  mechanics. chemistry. combustion, electromagnetics, opt ics ,  etc.. was a lso stressed. 

streamwise-dif fusion terms i n  the equations are neglected, t o  ca l cu la te  the supersonic f l ow  over a generic 
f i g h t e r  a i r c r a f t  conf igurat ion a t  h i g h - l i f t  condit ions. 
next paper. w i t h  local regions o f  subsonic f l o w  computed by an unsteady Navier-Stokes code. Data f o r  
comparison were very sparse. but reasonable agreement o f  the numerical and experimental r e s u l t s  was 
obtained. The ca l cu la t i on  t ime f o r  approximately 4100 g r i d  po in ts  i n  the crossflow planes and about 1000 
streamwise s ta t i ons  was 5.4 hours on an ETA 205 computer f o r  a wing, fuselage, canard. and nacel le  combi- 
nation. A major f rac t i on  o f  t h i s  t ime was consumed i n  regenerating the g r i d  a t  each streamwise s ta t i on .  

PAPER 27. SHANG ou t l i ned  the most common approaches used i n  the aerospace community and reviewed a 

He noted that t he  gr id-generat ion phase occupies an ever-increasing f r a c t i o n  o f  the t o t a l  

PAPER 28. WAI. ELOM, and YOSHIHARA employed the Parabolized Navier-Stokes (PNS) method, i n  which the 

They used an e x i s t i n g  PNS code, described i n  the  

PAPER 29. CHAUSSEE discussed the  NASA-Ames PNS code and several app l i ca t i ons  t o  supersonic and hyper- 
sonic conf igurat ions w i t h  important viscous e f fec ts .  
i n v i s c i d  f low i s  supersonic i n  the s t r e a m i s e  d i rec t i on .  and t h a t  the subsonic f l ow  i n  the viscous sub- 
layer  i s  always pos i t ive i n  the streamwise d i rec t i on .  This  al lows the s o l u t i o n  t o  march streanwise. g i v -  
ing  substant ia l  savings i n  CPU time. wh i l e  an i m p l i c i t  a lgor i thm i s  used t o  solve the  f l o w  i n  each cross- 
f l o w  plane. 

The parabolized approximation assumes t h a t  the 

Crossflow separation i s  permitted, but streamwise separation i s  not. An a lgebra ic  
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eddy-viscosity model i s  used i n  turbulent  Cases. Examples included ogive-cy1 inders. sphere-cones w i t h  
flaps, f inned p r o j e c t i l e s ,  the Space Shut t le  o rb i te r .  and the supersonic f i g h t e r  which i s  the subject of 
Paper 28. 

PAPER 30, Part  I. FLORES. HOLST, KAYNAK, GUNDY, and THOMAS described the development of a zonal 
Euler/Navier-Stokes code c a l l e d  Transonic Navier-Stokes (TNS). 
a lgor i thm t o  solve the unsteady eqtiatiOnS. bdt w i t h  a var iab le t ime step f o r  f as te r  convergence. 
d iv ided the flow i n t o  fou r  zones f o r  Wings: 
Navier-Stokes equations are solved, and two outer Euler blocks. 
lence i s  simulated by means of an algebraic eddy-viscosity model. 
wind tunnel and f o r  two transonic wings were given; the agreement w i th  experiments was genera l ly  good, 
although some dif ferences i n  regions Of  shock-induced Separation were noted. CPU times on a Cray X-MP 
computer were on the order o f  one hour f o r  150,000 g r i d  Points. 

angle of attack, w i t h  a view toward demonstrating the robustness, e f f ic iency.  and accuracy o f  the code, 
and assessing the cha rac te r i s t i cs  of the gr id .  
p i  ish& by computing the transformation metrics cons is ten t l y  t o  preserve a uniform f r e e  stream. 
were obtained up through maximum l i f t  at  M = 0.5 and 0.8, although data were not avai lab le f o r  compari- 
son. The author suggested improvements i n  terms Of  add i t i ona l  g r i d  refinement, an improved numerical- 
d i s s i p a t i o n  model, and a turbulence model more su i ted  t o  shock-induced separation. 

PAPER 31. KORDULLA, VOLLMERS, and DALLMANN reported on t h e i r  s imulat ion o f  transonic laminar flow 
past a hemisphere-cylinder a t  angle of attack, and they analyzed the topology o f  the separated f low i n  
great  d e t a i l .  
i m p l i c i t  p red ic to r - co r rec to r  scheme. and up t o  about 230,000 g r i d  po in ts  were used i n  the present study; 
cpu times on the Cray 1s computer used were not quoted. 
exh ib i t ed  unsteadiness i n  the separated region, and the question o f  whether t h i s  was due t o  f l u i d  physics 
o r  t o  numerical e r ro rs  was not resolved. 
topoiogy of the computed f l ow  f i e l d .  
kinematics and b i f u r c a t i o n  theory, considerable d e t a i l  was ext racted from the  so lut ion.  
sketches of complex v o r t i c a l  s t ructures and of the major s ingu la r  stream surfaces were presented (see 
Figs. 2 and 3). 

The method uses a diagonalized i m p l i c i t  
They 

two inner  blocks near the surface where the th in - l aye r  
A S  i n  the preceding two papers, turbu- 

Results f o r  an a i r f o i l  i n  a so l i d -wa l l  

PAPER 30, Part  11. CHADERJIAN applied the aforementioned TNS code t o  a swept NACA 0012 wlng a t  high 

Major improvements near g r i d  s i n g u l a r i t i e s  were accom- 
Results 

Thei r  time-accurate, f inite-volume method Uses a v a r i a t i o n  o f  the MacCormack e x p l i c i t -  

The fine-mesh s o l u t i o n  o f  a nominal ly steady case 

The main t h r u s t  o f  the paper, however, was the  analys is  of the 
Guided by e a r l i e r  work of the t h i r d  author and others on topolog ica l  

Impressive 

/ 
Fig. 2. Sketch o f  the major s ingular  points i n  the  symnetry plane and on the wal l  o f  a hemisphere 

c y l i n d e r  a t  angle o f  a t tack i n  t ransonic  flow; Paper 31. 

Fig. 3. Sketch o f  the major s ingular  stream surface i n  the f l ow  f i e l d  o f  a hemisphere cy l inder ;  
Paper 3;. 

PAPER 32. F i n a l l y ,  SHANG discussed h i s  pioneering computations o f  the f l ow  f i e l d  o f  the complete 
XC-240 experimental a i r c r a f t  a t  a Mach number o f  5.95. 
solved I n  a s ing le  computational block using MacCormack's e x p l i c i t  u n s p l i t  algori thm, w i t h  the  a i d  o f  a 
sophis t icated data management scheme and the Sol id  State Device (SSD) of  the Cray X-MP. 
f o r  475,200 g r i d  po in ts  was about 20 hours. o f  which about 25% was consumed by f/O t r a n s f e r  t o  the SSD. 
Good agreement was obtained between computed and measured l i f t  and drag, and on the whole, the pressure 

The equations i n  weak conservation-law form were 

The s o l u t i o n  time 
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d i s t r i b u t i o n s  and heat t rans fe r  were sat is factory .  

temperatures. 

3.  ISC CUSS ION AND EVALUATION 

The goal o f  the Symposium, as noted i n  the In t roduct ion.  Was t o  provide an 'I. .. assessment of the 
statl;s of CFD i n  aerodynamic design and analysis." w i t h  an emphasis on " ... emerging appl icat ions of 
advanced computational techniques t o  complex and r e a l i s t i c  ConfigUratiOnS." Indeed, the mater ia l  pre- 
sented a t  t he  Symposium was genera l ly  i n d i c a t i v e  Of the State Of the a r t  of appl ied computational aerody- 
namics i n  the NATO countries, i n  terms o f  Current a c t i v i t i e s .  methods, numerical and phys ica l  modeling 
employed, and computers i n  service. 

However, the Symposium had d e f i n i t e  l i m i t s  i n  Scope and content. The Program Committee was obl iged 
t o  leave out noteworthy e f f o r t s  i n  almost every country, and there was l i t t l e  representation from Sweden 
and none from Japan. 
excluded, apparently by i n ten t .  
and h i s  colleagues on the  FLO-xx se r ies  of codes and t h e i r  many Permutations was hard ly  represented. 

been developed i n  several countr ies over the past few Years, but these e f f o r t s  were not  we l l  repre-  
sented. 
strong-coup1 i n g  methods tha t  simply has not y e t  mater ia l ized.  

The Symposium did make c l e a r  the widespread Use Of CFD throughout the aeronautical indust ry ,  and i t  
revealed t h a t  the spectrum o f  nethods i n  use i s  growing r a p i d l y  t o  inc iude Euler and Navier-Stokes codes 
appl ied t o  complex configurations. The Symposium was a lso very t imely ,  because the emphasis has c l e a r l y  
sh i f t ed  from 2-D problems t o  the more r e a l i s t i c  world of 3-0. 
the advent o f  t h i s  geometrical complexity i s  causing the time, manpower, and computer costs of g r i d  gener- 
a t i o n  and data analysis t o  become much more s i g n i f i c a n t  r e l a t i v e  t o  the e f f o r t  previously involved i n  
simply generating solut ions. 

3.1 Costs and Capabi l i t ies  

A major e f f o r t  t o  d isp lay the r e s u l t s  w i th  the a id  o f  
co lo r  graphics produced some Spectacular p i c tu res  of the Surface stream1 ines, pressures, and 

Also, research on new a lgor i thm development and turbulence modeling was general ly 
Beyond that ,  i t  was somewhat Surpr is ing t h a t  the work o f  Anthony Jamson 

AS a general comnent on Session I V .  v iscous- Inv isc id  In teract ions,  weakly-coupled 3-0 methods have 

It i s  not  c lear  whether t h i s  was accidental,  O r  whether i t  r e f l e c t s  a new trend toward developing 

And as discussed i n  Section 3.1.2 below, 

Today the aerodynamicist has a wide range of computational methods avai lab le,  a t  a correspondingly 
wide range i n  manpower and computer costs. 
f ini te-volume methods remain much more popular f o r  nonl inear problems than f o r  f ie ld-panel  o r  
f in i te-e lement  methods. M. P ie r re  P e r r i e r  argued persuasively f o r  the l a t t e r ,  but no d i r e c t  quan t i t a t i ve  
comparisons e r e  made, nor could be made from the  ma te r ia l  presented a t  the Symposium. For i n v i s c i d  
flows. 3-0 p o t e n t i a l  codes continue t o  be developed and improved. but t h i s  approach i s  now r e l a t i v e l y  
mature and the  development o f  Euler methods has become more fashionable. However, the treatment o f  v i s -  
cous e f f e c t s  has not kept  pace, a t  l e a s t  i n  3-D. Viscous/ inv isc id  coupl ing methods are p o t e n t i a l l y  very 
cos t -e f fec t i ve  i n  CPU t ime,  but  much remains t o  be done t o  make them work proper ly  f o r  f lows w i t h  strong 
shock waves. 
CPU times remain very long, t he  convergence i s  slow, and questions about accuracy, t he  e f f e c t s  o f  g r i d  
refinement, and turbulence modeling have bare ly  been asked, l e t  alone answered. 

As mentioned i n  the In t roduct ion,  f i n i t e - d i f f e r e n c e  o r  

Pioneering showcase Navler-Stokes so lut ions are emerging rap id l y ;  but  as noted below, the 

3.1.1 Cmputational Requirements. The d i f f e r e n t  l eve l s  o f  approximations t o  the governing equations 
o f  f l u i d  mechanics, and the associated d i f f i c u l t i e s  i n  so l v ing  them numerical ly, are we l l  known and need 
not  be r e i t e r a t e d  here. However, i t  i s  i n s t r u c t i v e  t o  examine b r i e f l y  the dominant fac to rs  tha t  determine 
the computational requirements f o r  the range o f  methods t h a t  were presented a t  the Symposium. O f  course, 
many fac to rs  such as the degree o f  ma tu r i t y  o f  d i f f e r e n t  algori thms and the impact o f  new computer a rch i -  
tectures are d i f f i c u l t  t o  quant i fy ;  but  the approximate CPU time requi red f o r  most o f  the methods can be 
crudely  estimated with the  a i d  o f  the fo l l ow ing  formula: 

CPU = A x WGI x N: x NI/FLOPS 

where: A = "numerical i n e f f i c i e n c y "  f a c t o r  

WGI 

NG 

m = 1 f o r  f i n i t e - d i f f e r e n c e  , = 2 f o r  panel methods 

NI 

FLOPS = number o f  f l o a t i n g - p o i n t  a r i t hmet i c  operations per second 

= number o f  Operations per  g r i d  p o i n t  per t i m e  s tep 

= number o f  g r i d  po in ts  o r  panels 

= number o f  i t e r a t i o n s ,  o r  number o f  t ime steps f o r  an unsteady ca l cu la t i on  

The ine f f i c i ency  factor ,  A, i s  introduced here t o  emphasize t h a t  few codes take f u l l  advantage of the 
computer being used; i n  p rac t i ce  t h i s  f a c t o r  i s  a func t i on  o f  the programing e f f i c i ency .  the degree of 
vector izat ion.  t he  coupling between the  g r i d  and the  s o l u t i o n  algori thm, the data-management strategy, the 
user experience, etc. I dea l l y ,  i t s  value should approach uni ty ;  but  espec ia l l y  w i t h  the advent of 
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supercomputers w i t h  novel arch i tecture,  O r  with I / o  t ransfer  t o  external  memory devices, i t  could wel l  
be 2.0 o r  even larger .  

numerical method; t h a t  i s ,  of the flow equations. the boundary condit ions, the s o l u t i o n  algorithm, and 
whether the g r i d  metr ics  are conputed a t  each time Step O r  stored i n  memory. The quant i ty  NG represents 
the  number o f  g r i d  po in ts  f o r  a f in i te-d i f ference method. the number o f  elements f o r  a f in i te-e lement  
method. o r  the number of panels fo r  a Panel method. Consequently. WGI NG represents the number of a r i t h -  
metic operations t h a t  must be performed a t  each i t e r a t i o n  o r  t ime step, although i n  some instances w i t h  
panel methods, NG log  NG 

ber  o f  t ime steps i n  an unsteady problem). i s  genera l ly  the most d i f f i c u l t  quan t i t y  t o  estimate. And 
unfortunately, NI 
p a r t i c u l a r l y  t r u e  i n  the e a r l y  stages of matur i ty  of a code, such as many o f  those presented i n  Sessions 
111 - V. The value o f  NI 
ones; but on the other  hand, 

F ina l l y ,  the sustained computing speed, FLOPS, i s  a func t i on  o f  the computer clock speed and arch i -  
tecture,  the data s t ruc tu re  and techniques of the code. and the memory requirements ( in-core o r  external  
memory). 
t a ted  by management, i.e.. by the s i ze  and cost o f  the computer system. 

It i s  c lea r  from Eqn. 1 t h a t  many d i f f e r e n t  f a c t o r s  determine the  CPU time, and hence, the computa- 
t i o n a l  cost, of an aerodynamic ca l cu la t i on .  Unfortunately, none o f  the papers provided a l l  o f  the ingre-  
d ien ts  speci f ied i n  Eqn. 1; however, enough in format ion was provided e i t h e r  a t  t he  Symposium o r  elsewhere, 
o r  could be inferred. t o  es tab l i sh  some trends and order-of-magnitude estimates. 
sumnarized i n  Table 1. f o r  a hypothet ica l  wing-body combination o f  moderate geometrical complexity. 
t he  Mach number i s  i m p l i c i t l y  assumed t o  be subsonic i n  the l i n e a r  case, supersonic f o r  the Parabolized 
Navier-Stokes estima e. and t ransonic  otherwise; and the reference computer speed i s  t h a t  of the Cray 1-5. 
i.e. FLOPS = 80 x 10 . 

The number o f  a r i t hmet i c  operations Per g r i d  Point  Per i t e r a t i o n ,  WGI, i s  a strong funct ion of the 

i s  a more accurate representation than Nm. G 

The t o t a l  number o f  i t e ra t i ons ,  NI. t o  converge t o  the desired leve l  o f  accuracy (or  the t o t a l  num- 

f o r  a given a lgor i thm i s  often both problem-dependent and grid-dependent. This i s  

i s  genera l ly  s i g n i f i c a n t l y  greater  f o r  e x p l i c i t  methods than f o r  i m p l i c i t  
WGI f o r  i m p l i c i t  methods tends t o  be greater. 

The aerodynamicist has r e l a t i v e l y  l i t t l e  con t ro l  over t h i s  quant i ty ;  ra ther ,  i t  i s  l a r g e l y  d i c -  

This in format ion i s  
Here 

6 
It should be emphasized t h a t  these estimates are very approximate, hypothet ica l ,  and somewhat 

ab r i t ra ry ;  therefore, they could e a s i l y  be o f f  by a f a c t o r  o f  2 o r  more. Also, they r e f l e c t  the arguable 
premise t h a t  increas ing numbers o f  g r i d  po ints  should be accompany the increas ing soph is t i ca t i on  i n  the  
f low modeling. i n  order t o  capture the more complex f low physics t h a t  motivate the  more complex 
approaches. Nevertheless. Table 1 gives a generi!, qualitative p i c t u r e  o f  the d i f ferences i n  the o v e r a l l  

Table 1. APPROXIMATE COMPUTATIONAL REQUIREMENTS 
FOR A COMPLEX WING-BODY COMBINATION 

................................................................................. 
CPU. Total memory, 

minutes words x106 N I  
N .  

'GI m i  11Fons 
Method 

Linear (panel) (1000 panels) 2 - 20 0.5 - 1.0 

Transonic Small 100 0.1-0.2 100 - 300 5 - 15 0.5 - 1.0 
D i  sturbance 

F u l l  Po ten t i a l  500 0.1-0.2 200 - 500 10 - 30 1 - 4  

Euler  1000- 0.2-0.5 500 - 5000 50 - 500 2 - 10 
3000 

Parabolized NG x NI - 2 - 5 ~ 1 0 ~  10 - 60 0.5 - 1.0 
Navier-Stokes 

Navier-Stokes 1500- 0.5-2 1500 - 10000 1000 - 5000 15 - 60 
4500 

computational requirements of many o f  t h e  approaches t h a t  were described a t  t he  Symposium. It Indicates. 
f o r  example. t h a t  t ransonic  small-disturbance, f u l l - p o t e n t i a l .  and PNS codes can be more o r  less competi- 
t i v e  w i t h  panel codes. w i t h  respect t o  computer resources. 
one would have t o  pay today t o  ob ta in  f u l l  viscous s imulat ions o f  t ransonic  f low. 
deserve f u r t h e r  comnent, and t h i s  leads l o g i c a l l y  t o  the  question o f  what c a p a b i l i t i e s  the d i f f e r e n t  
methods ac tua l l y  o f f e r  f o r  aerodynamic design and analysis. 

t i o n a l  aerodynamics comnunity f o r  many years, and they are genera l ly  considered t o  be the most f l e x i b l e  
and leas t  Inexpensive approach f o r  complex configurations. 
flows; and as noted above, nonl inear  po ten t i a l  codes have been developed t o  a competit ive p o s i t i o n  

The t a b l e  a!sc gtves some idea !?f the p r i c e  
These observations 

3.1.2 Capab i l i t i es  and L imi ta t ions.  Linear panel codes have been the  workhorses o f  t he  computa- 

They are !nappropriate, however, f o r  transonic 
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costwise. 
estimates of computer resources i n  Table 1 suggest t h a t  space-marching Euler o r  PNS codes might wel l  be 
a t t r a c t i v e  a l te rna t i ves  f o r  supersonic cases. However. these nonl inear  codes have had less  t i m e  to 
benef i t  from user experience. and they requ i re  more e f f o r t  t o  generate the g r ids .  Consequently, they 
would probably be mre d i f f i c u l t  t o  use today i n  an engineering environment. 

Today, almost any company, organization, O r  i n s t i t u t i o n  t h a t  has s i g n i f i c a n t  connections w i th  t ran-  
sonic a i r c r a f t  o r  miss i les r o u t i n e l y  uses nonl inear  3-0 Poten t ia l  codes. and the he l i cop te r  cornuni ty  i s  
moving r a p i d l y  i n  that d i rec t i on .  The recent t rend t o  move on t o  Euler codes seem t o  be motivated by 
three main factors :  f i r s t .  t o  t r e a t  Stronger shock waves than i s  Permitted by the p o t e n t i a l  formulation; 
second, the a b i l i t y  t o  capture vortex sheets and other  aspects of r o t a t i o n a l  f lows; and t h i r d ,  t o  b u i l d  a 
bridge t o  Navier-Stokes codes. 
worthy w i t h  regard t o  the f i r s t  consideration. and Papers 14, 15. and 16, as we l l  as Ref. 7. provide 
representat ive demonstrations o f  the second factor .  

Two po in ts  can be made regarding the nonl inear  i n v i s c i d  codes, espec ia l l y  the Euler ones. 
neglect o f  viscous ef fects ,  the ca lcu lated l i f t  i s  too high. the drag i s  too low, and the shock wave i s  i n  
the wrong pos i t ion;  consequently, the p i t c h i n g  moment i s  genera l ly  i nco r rec t ,  too. 
e f fects  may be masked or counterbalanced by the ef fects  Of Coarse grids, numerical d i ss ipa t i on ,  and other  
numerical e r ro rs  (as i l luminated by Paper 14. f o r  example). The net e f fect  i s  t o  introduce an element of 
uncer ta in ty  i n  the  resul ts ,  which can seldom be evaluated shor t  Of performing extensive, and expensive, 
grid-ref inement studies. S im i la r  c r i t i c i s m s  can be leveled a t  t he  Navier-Stokes ca l cu la t i ons  as wel l ,  as 
discussed below. 

Addi t ional  d i f f i c u l t i e s  Can a r i se  i n  supersonic flows. Cf .  Paper No. 5; therefore, the 

The r e s u l t s  of AGAR0 Working Group WG-07 [Ref. 7 1  are espec ia l l y  note- 

With the 

I n  pract ice,  these 

Secondly. the r i s e  i n  appl icat ions t o  complex 3-D conf igurat ions has dramat ica l ly  increased the 
importance o f  both g r i d  generation and post-processing data analysis. t o  such an extent  t h a t  now they are 
o f t e n  the pacing items w i t h  respect t o  manpower and elapsed t ime .  As O r .  Wolfgang Schmidt noted i n  the 
c los ing  discussion period. i t  may take months t o  set  UP the complex mesh fo r  a complete a i r c r a f t ,  fol lowed 
by a day o r  two o f  "clock" t ime t o  complete an hour o r  So Of CPU t i m e ,  and i t  may then take months t o  
"reduce" the  data f u l l y .  (The comparison w i t h  large wind-tunnel p ro jec ts  goes wi thout  saying.) 
more, t h i s  added complexity means t h a t  i t  i s  becoming increas ing ly  d i f f i c u l t  t o  hand-off these powerful 
nonl inear codes t o  inexperienced users. 

Further- 

Coupled v iscous- inv isc id  i n t e r a c t i o n  methods are genera l ly  considered t o  be promising f o r  design 
appl icat ions because of t h e i r  computational e f f i c i e n c y  r e l a t i v e  t o  Navier-Stokes approaches. 
dimensional formulations l i n k i n g  i n v i s c i d  and viscous algori thms formed the bas is  o f  a major AGAR0 Sympo- 
sium i n  1980 [Ref. 81. 
successful appl icat ions t o  flows w i t h  small amounts of separation. Several successful extensions t o  3-0 
have appeared i n  the  recent l i t e r a t u r e ,  although these are mostly weak-coupling methods appl ied t o  unsepa- 
ra ted  flows. However, the confidence l e v e l  t h a t  e x i s t s  fo r  the 2-0 methods seemed t o  be lack ing a t  t h i s  
Symposium. As noted above, t h i s  may r e f l e c t  a per iod of renewed e f f o r t  t o  develop new strong-coupling 
methods t h a t  are robust and e f f i c i e n t ,  and as noted by Fermin i n  Paper 26, which g ive accurate p red ic t i ons  
o f  drag. The ensemble o f  papers i n  Session I V  suggests t h a t  much work remains t o  be done. even f o r  high- 
aspect - ra t io  wings, when st rong coupling i s  requi red between the viscous and i n v i s c i d  regions. 
RAE experiments discussed i n  Paper 26 should prov ide good ta rge ts  and challenges f o r  improvements i n  t h i s  
area. 

o f  the preceding methods are t h e o r e t i c a l l y  el iminated. The computational requirements shown i n  Table 1 
i nd i ca te  t h a t  t h i s  approach i s  not  ye t  p r a c t i c a l  f o r  rou t i ne  aeronautical analys is  and design, although 
t h i s  conclusion would completely change w i t h i n  a decade if the past  trends i n  computer technology and 
a lgor i thm development are extrapolated i n t o  the fu tu re  [Ref. 91. 
v a l i d i t y  o f  the r e s u l t s  t h a t  are being computed today. I n  most cases, 2-0 Navier-Stokes ca l cu la t i ons  are 
approximately as good as t h e  average wind-tunnel r e s u l t s  [Ref. 101. However, the issue of 3-0 code v a l i -  
dat ion i s  mired i n  controversy and unce r ta in t y  regarding turbulence modeling, s p a t i a l  resolut ion,  the 
e f f e c t s  o f  numerical d i ss ipa t i on  and other  numerical er rors ,  and the  completeness and r e l i a b i l i t y  o f  the 
re levant  experiments. 

ments (as do the r e s u l t s  o f  the simpler codes a t  a f r a c t i o n  o f  the cost),  provided "reasonable" g r i d s  are 
used and some a t ten t i on  i s  pa id t o  the numerical d i s s i p a t i o n  parameters. 
the Navier-Stokes approach i s  f u l l y  j u s t i f i e d  over simpler methods because o f  strong v iscous- inv isc id  
i n t e r a c t i o n  and/or massive f l ow  separation, v i r t u a l l y  a1 1 o f  r e s u l t s  t o  date have showed s i g n i f i c a n t  d i s -  
crepancies when deta i led comparisons were made w i t h  experiments. 
experts, t he  simple turbulence models used i n  a l l  the large Navier-Stokes codes described a t  the Symposium 
are inadequate f o r  such appl icat ions,  and i n  the opin ion o f  the leading numerical analys is ts ,  t he  g r ids  
would have t o  be ref ined considerably before the so lut ions could be expected t o  be grid-independent. 

Therefore, one may conclude t h a t  today 's  3-0 Navier-Stokes so lut ions are useful but  l a r g e l y  q u a l i t a -  
t i v e .  
valuable phys ica l  ins ights  t h a t  may not  be evident i n  experimental data. The issues of turbulence model- 
ing  and g r i d  reso lu t i on  are, i n  fac t ,  being addressed vigorously, and the papers i n  Session V g ive a pre- 
view o f  some th ings  expect i n  the  fu ture.  

Two- 

These methods have matured and come i n t o  general use since then, i nc lud ing  

The new 

With in  the scope o f  t he  Reynolds-averaged formulat ion o f  the Navier-Stokes equations, the l i m i t a t i o n s  

However, the primary issue here i s  the 

For most r e l a t i v e l y  benign flows. the Navier-Stokes ca l cu la t i ons  agree reasonably w e l l  w i th  experi- 

However, i n  those cases where 

I n  the opin ion o f  most turbulence 

However. t he  extent o f  the in format ion bur ied i n  the r e s u l t s  i s  enormous, and they probably conta in  
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3.2 Addi t ional  ProblPms and I Z Z U P C  

I n  add i t i on  t o  the issues Of  Costs and capab i l i t i es  of the various CFO approaches, the top ics l i s t e d  

3.2.1. Adaptive Grids. None Of the regular Papers discussed solut ion-adaptive gr ids.  However, t h i s  

below emerged e i t h e r  dur ing the formal Sessions Of i n  the f i n a l  discussion period. 

concept o f f e r s  the p o t e n t i a l  of reducing the computational requirements by p lac ing  g r i d  po ints  where they 
are most needed and making more e f f i c i e n t  use of the computer r ' 3 3 U r C e S  avai lab le.  
ind icated t h a t  t h i s  top i c  i s  under a c t i v e  invest igat ion.  

3.2.2. Turbulence Model VS.  Numerical Errors. 
er ror ,  one may question e i t h e r  the turbulence rodel  O r  the fUneriCa1 model. 
nents. The f i r s t  i s  the r e l a t i v e  magnitude of t he  numerical v i s c o s i t y  t h a t  i s  inherent i n  most CFD 
methods compared t o  the laminar O r  turbu lent  VisCfJsitY; one may ask which o f  these i s  the dominant fac to r  
i n  d i f f e ren t  pa r t s  o f  the flow f i e l d .  
spacing, and thus i s  a property of the numerics, whereas the phys ica l  v i s c o s i t y  i s  a property of the f l u i d  
and/or f low gradients. I n  the Euler Calculat ions of Murman and Rizz i ,  f o r  example. the numerical viscos- 
i t y  i s  the mechanism which permits the formation Of  shear layers i n  a numerical s i rm la t i on  of an i n v i s c i d  
f low. However. they claimed t h a t  any amount of t m w i c a l  v iscos i ty ,  however small. was s u f f i c i e n t  t o  
a l l ow  a r e a l i s t i c  so lu t i on  t o  develop, and that t h e i r  r e s u l t s  were i nsens i t i ve  t o  i t s  value. 
t he  Navier-Stokes ca lcu lat ions,  (Papers 27 and 30, f o r  example), t he  numerical v i s c o s i t y  was ra the r  large 
i n  some pa r t s  o f  the f l ow  f i e ld ,  especia l ly  near shock waves, but  was probably small compared t o  the t u r -  
bu lent  v i s c o s i t y  i n  the i n t e r i o r  Of the boundary layer .  Unfortunately, i t  has not ye t  been possible t o  
r e f i n e  these g r i d s  enough t o  determine how Sensit ive these 3-0 so lut ions are t o  numerical v iscos i ty ,  o r  
o ther  numerical parameters. 

Another issue, ra i sed  by O r .  Tuncer Cebeci. 4s the  g r i d  r e s o l u t i o n  i n  the d i r e c t i o n  normal t o  the 
wa l l  t h a t  i s  requi red f o r  accurate p red ic t i on  of the surface shear stress. 
use many more po in ts  across the viscous layer  than Navier-Stokes methods, although the trends are t o  use 
comparable spacing imnediately adjacent t o  the wal l .  

With the exception of Papers 19. 25, and 26, a l l  of the tu rbu len t  ca l cu la t i ons  were done using eddy- 
v i s c o s i t y  models f o r  s imp l i c i t y .  As noted i n  Section 3.1.2. t h i s  would be a source o f  serious e r r o r  f o r  
many complex flows, i n  the  opin ion of most turbulence experts. However, t h i s  issue was not a major theme 
o f  the Symposium, nor an ove r r i d ing  concern of most o f  the pa r t i c i pan ts .  

This t o p i c  was g iven only  secondary treatment i n  almost a l l  o f  t he  formal 
However, i n  the d iscuss ion per iod the accuracy o f  drag p red ic t i ons  emerged as being very impor- 

M r .  J. W. Slooff 

Several pa r t i c i pan ts  

When W w r i C a l  so lu t ions are suspected t o  be i n  
This issue has several compo- 

The numerical ViscoSitY normally var ies i n  propor t ion t o  the g r i d  

I n  some of 

Boundary layer  methods tend t o  

Again, more grid-ref inement studies are needed. 

3.2.3. Drag Calculat ions. 
papers. 
t a n t  t o  many pa r t i c i pan ts ,  and i t  seems ce r ta in  t o  receive more a t t e n t i o n  i n  the fu ture.  
stated, w i t h  reference t o  the large number of colored graphs o f  r e s u l t s  tha t  were presented. t h a t  an 
improvement i n  drag p r e d i c t i o n  o f  10 counts would be worth more than a thousand p ic tures.  

A major mot ivat ion f o r  many o f  the advanced CFD methods under devel- 
opment today i s  the des i re  t o  compute the en t i re  f l ow  f i e l d  o f  f l i g h t  vehic les a t  h igh angles of attack, 
and these flows conta in  complex v o r t i c a l  structures. Such f l ow  features present major challenges i n  g r i d  
generation and computation. as many e x i s t i n g  techniques are not su i tab le  f o r  captur ing and preserving the 
s t rong f l ow  gradients  t h a t  are involved. Solution-adaptive g r i d  techniques may be advantageous here. 
Also, new techniques o f  captur ing or f i t t i n g  concentrated vo r t i ces  may have t o  be developed, by analogy 
w i t h  the successful e f f o r t s  i n  the past t o  develop both s h o c k - f i t t i n g  and shock-capturing methods. 

This  c lass of f lows a l so  provides major challenges i n  analyzing and understanding the computed 
resu l t s .  as the  topologies o f  v o r t i c a l  structures associated w i t h  3-0 separation are very complex. 
Paper 31 included some e x c i t i n g  examples o f  th is  complexity, which requi res extensive computer-graphics 
c a p a b i l i t y  t o  even begin t o  analyze the f l o w  structure. 

The f ixed-wing a i r c r a f t  indust ry  has been the  primary d r i v i n g  force f o r  the 
computational aerodynamics techniques t h a t  were presented a t  t h i s  Symposium. 
c lass o f  vehic les mature, one may expect t o  see expanded appl icat ions t o  r o t o r c r a f t  and V/STOL a i r c r a f t ,  
turbmachinery. and hypersonic vehicles. Par t ic ipants  a lso suggested t h a t  major f u tu re  e f f o r t s  may include 
t r a n s i t i o n  predic t ion;  unsteady aerodynamic flows; advanced turbulence modeling, inc lud ing numerical simu- 
l a t i o n s  o f  turbulence; and op t im iza t i on  o f  body shapes t o  s a t i s f y  prescribed aerodynamic proper t ies,  such 
as pressure d i s t r i bu t i ons .  

F ina l l y ,  i n  Paper 27, O r .  J.S. Shang discussed a t  l eng th  " i n t e r d i s c i p l i n a r y  computational f l u i d  
dynamics," i n  which f l u i d - f l o w  equations (Navier-Stokes equations, i n  h i s  perspective) are coupled w i t h  
the governing equations of s o l i d  mechanics, chemistry, combustien, electmsagnet ics ,  cptics, etc .  

4. CONCLUSIONS AND RECOMMENDATIONS 

3.2.4. High ly-Vor t ica l  Flows. 

3.2.5. Future Topics. 
As CFD methods f o r  t h i s  

Cwpu ta t i ona l  F l u i d  Dynamics has established a f i r m  r o l e  i n  aerodynamic design, and t h i s  Symposium 
revealed the wide spectrum o f  CFD t o o l s  t h a t  are now ava i l ab le  t o  the aeronautics comnunity. 
the app l i ca t i on  of these t o o l s  t o  problems o f  ever-increasing complexity i s  accelerat ing rap id l y ,  and 
computer hardware i s  advancing even f a s t e r  than lmprovements !E numerical algori thms. 

Furthermore, 

As  a resl; l t ,  the 
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users o f  modern CFD technology can generate vast amounts of information, and t h e i r  managers are not always 
sure how v a l i d  o r  useful t h i s  mountain o f  data r e a l l y  i s .  

Three important needs a r i se  from t h i s  S i tua t i on -  The f i r s t  i s  t o  r a i s e  the confidence leve l  of CFD 
resu l t s ,  as opposed t o  ove rse l l i ng  t h e i r  importance Or covering Up t h e i r  l i m i t a t i o n s .  
u rgen t l y  need be t te r  v a l i d a t i o n  o f  t he  codes and convincing demonstrations o f  t h e i r  c a p a b i l i t i e s  and 
l im i ta t i ons .  This requires more ca re fu l  grid-ref inement s tud ies and numerical-error checks, leading to 
the establishment o f  r e l i a b l e  e r r o r  bands On CFD resu l t s .  Uncer ta in ty  analys is  has become an important 
p a r t  o f  q u a l i t y  experimental research and test ing,  and there i s  no reason not  t o  es tab l i sh  s i m i l a r  q u a l i t y  
con t ro l  f o r  CFO. I t  i s  a lso essen t ia l  t o  es tab l i sh  more standard t e s t  cases and t o  compare r e s u l t s  f o r  
them. 
o f  CFD code va l i da t i on  i n  mind, and w i th  more redundancy, higher accuracy, and b e t t e r  f low q u a l i t y  than 
has been the norm heretofore. 
services o f  t h i s  type i n  recent years, by def in ing t e s t  cases, coord inat ing the experimental e f f o r t s  a t  
several d i f f e r e n t  laboratories. and assessing the resu l t s .  
renewed vigor. 

Second, b e t t e r  data and in format ion management t o o l s  are becoming as important as b e t t e r  computing 
hardware f o r  post-processing the  CFD r e s u l t s  and ex t rac t i ng  the valuable in format ion t h a t  they contain. 
Although not a l l  o f  the Symposium p a r t i c i p a n t s  shared the w r i t e r ' s  enthusiasm f o r  co lo r  computer graphics, 
they a l l  agreed t h a t  t h i s  aspect o f  appl ied CFO i s  essen t ia l  and i s  growing i n  importance. 
another area i n  which AGARD should t r y  t o  f a c i l i t a t e  b e t t e r  mu l t i - na t i ona l  cooperation and information 
exchange. 

lems. Although t h i s  issue was not a major theine of t h i s  SymPosium, i t  w i l l  probably hinder both progress 
i n  and acceptance of appl ied computational aerodynamics f o r  many years. On the one hand, CFD researchers 
mrst forge ahead i n  the development of new methods, without wa i t i ng  for the fundamentals o f  turbulence t o  
be understood f u l l y .  However, they need t o  s t ruc tu re  t h e i r  codes as much as poss ib le  t o  accept new turbu- 
lence models. and they must be w i l l i n g  t o  incorporate them as b e t t e r  ones become avai lab le.  

recent developments i n  appl ied computational aerodynamics, and i t  c l e a r l y  f u l f i l l e d  the  s tated goal of 
assessing the s tatus o f  CFD i n  contemporary aeronautical design and analysis. Together w i t h  the problems 
and issues were t h a t  were i den t i f i ed ,  many successes of CFD i n  recent years were h igh l ighted,  and the 
trends o f  current  developments p o i n t  t o  a promising fu ture.  

I n  the near term, refinements i n  the v iscous- inv isc id  methods should overcome many o f  the shortcom- 
ings of present i nv i sc id  methods wi thout  s i g n i f i c a n t  add i t i ona l  costs, and cont inu ing improvements i n  
computer hardware and software and i n  numerical algori thms w i l l  create more demand f o r  the Navier-Stokes 
codes. 
extend t o  viscous flows w i t h i n  a few years f o r  f ixed-wing a i r c r a f t .  A t  the same time, CFD should f i n d  
rap id ly- increas ing appl icat ions i n  o ther  f i e l d s  o f  aeronautics, such as r o t o r c r a f t  and turbomachinery. I n  
the  longer term, i t  seems c l e a r  t h a t  CFD w i l l  be combined w i th  a wide range o f  o ther  d i s c i p l i n e s  t o  expand 
g r e a t l y  i t s  range o f  appl icat ions and usefulness. 
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